
1 The Pi-Space Formulas 
 

In this chapter, I’ll show how one can alter some existing Physics formulas so that they work 

for v < C and v << C.  Newton’s formulas assume that velocity and acceleration are linear but 

we can use our knowledge of Pi-Space to produce more general forms.  This is without the 

need for General Relativity.  I’ll cover General Relativity after this and address those 

formulas too from the perspective of Pi-Space. 

 

These advanced formulas cover 

 

Einstein Special Relativity, Energy 

Newton Gravity, Acceleration, Velocity 

Orbits 

Bernoulli 

Navier-Stokes 

Hooke 

Simple Harmonic Motion 

 

1.1 More general form of E=MC
2
 

 
I’ll start with the simplest change which is a modification to the Einstein Mass Energy 

Equation.  We add the constant Pi. 

 

 2cmE   

 

This is due to the Square Rule.  All we need to do here is add the constant  . 

 

1.2 Velocity addition and Subtraction in Pi-Space 
 

In Pi-Space, there are two classifications of addition and subtraction.  The first classification 

is straight-forward addition and subtraction in a non-Inertial framework; namely where there 

is no acceleration or deceleration to go from v1, to v2.  For this case, use the Einstein velocity 

addition and subtraction formulas. 

In the second case, we have an Inertial Framework in which going from v1 to v2 requires a 

constant rate of change of velocity (AKA acceleration).  For this case, you’ll need to use Pi-

Space formulas which model how a Pi-Shell loses or gains area over time. 

 

1.3 General Solution (v<<C and v<C) To Kinetic Energy Using 
Pi-Space 

 

The Pi-Space formula for the general solution to Kinetic Energy in Pi-Space is 
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This formula is relativistic and gives the same answers as the Newtonian formula where 

v<<C and also provides the correct answer where v<C.  What’s more, you don’t need 

General Relativity. 

 

The Proof (ignoring mass) 

 

Sum up the velocities from 0..V where there is a constant acceleration.  Sin x represents the 

constant area gain represented in terms of the Pi-Shell diameter.  To sum up the velocities we 

use integration.  The input angle is part of a right-angled triangle which represents three Pi-

Shells (constituting Pi-Shell addition) as I’ve shown already. 
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However, v/c is a diameter value and we need to convert it into an angle (because that’s what 

Cos needs) so we use an inverse sin function.  To elaborate further, ArcSin() takes a value 

0..1 and maps it to 0..Pi/2.  In our case, 1 is V/C so it maps from Pi-Space velocity to the 

Trignometric version of our Pi-Space formulas where I show for example a right angled 

triangle. 

 



















c

v
ArcSinCos1  

 

We don’t need to do anything further as we’ve summed up the total velocities.  The way 

Newton did this was he squared the velocities and halved the result.  We don’t need to halve 

the result as the reason he halved the result was to get the sum of the average velocities. At 

v<C the velocity is almost the same so we can have an average and this is why his formula 

works. 

 

So if we take v=0.1C, the Newtonian result is 0.05 and if we apply it to this formula we get 

the same result.  However, at v=0.9, the values differ. 

 

Exercise: In Mathematica, try plotting v at 0 to 0.1 for the Newtonian and Pi-Space formula.  

Both return 0.05. 

 

Plot[1 -Cos[ArcSin[v]],{v,0,0.1}]; 

 



 
 

Plot[(v*v)*0.5,{v,0,0.1}]; 

 

 
 

Note that the two charts are almost identical where v<<C. 

 

Now change v=0 to 0.9 

 

Plot[1 -Cos[ArcSin[v]],{v,0,0.9}]; 

 

 
 

Plot[(v*v)*0.5,{v,0,0.9}]; 
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The values match at the lower relativistic values.  Again, we can use Mathematica to plot the 

values. 

 

Table[1-Cos[ArcSin[v]],{v,0,1.0, 0.1}] 

{0,0.00501256,0.0202041,0.0460608,0.0834849,0.133975,0.2,0.285857,0.4,0.56411,1.} 

 

Table[(v*v)*0.5,{v,0,1.0,0.1}] 

{0,0.005,0.02,0.045,0.08,0.125,0.18,0.245,0.32,0.405,0.5} 

 

Placing this is a comparison tables 

 

Velocity 0..V, constant acc Newtonian KE Pi-Space KE 

0.1 0.005 0.00501256 

0.2 0.02 0.0202041 

0.3 0.045 0.0460608 

0.4 0.08 0.0834849 

0.5 0.125 0.133975 

0.6 0.18 0.2 

0.7 0.245 0.285847 

0.8 0.32 0.4 

0.9 0.405 0.56411 

1.0 0.5 1 

 

So, using the Newtonian KE formula at V=C=1.0 which is the fastest possible speed, one has 

KE of 0.5.  However, at the lower speeds, it matches the Pi-Space KE formula because the 

slope of both curves is almost linear.  At V=1.0 for the Pi-Space KE formula, KE is 1.0.  

Note: The total area of the Pi-Space is Pi/2 * 1 which is Pi/2.  Non-linear combined velocity 

accounts for 1.  In the Newtonian view, it’s 1 * 1.  Linear combined velocity accounts for 0.5. 

 

So Newtonian KE maps to 0.5CC (area) for Combined Velocities 0..C 

And  

Pi-Space KE maps to 1CC (area) for  Combined Velocities 0..C. 

 

Therefore we can see that Einstein’s Energy Formula E=MCC tallies with the Pi-Space KE 

formula MCC for V=0..C (where we add Mass M).  Earlier I showed how Einstein’s Energy 

Formula mapped to Pi-Space area using the Square Rule.  (Shortly, I’ll explain why 

Einstein’s Relative Kinetic Energy formula produces Infinity and how that tallies with this 

equation which does not.) 
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So, this is where we see a big win in Pi-Space beyond just reverse engineering other 

formulas.  We can create our own.  By understanding the geometry of Pi-Space, we can use 

Trig and some Integration to figure out your average speed at you’d fall into a black hole!  

We use Integration to add up the individual velocities which are related to the rate of area 

change. 

 

Note: The total area of Sin(x) where x is 0 to Pi/2 is Pi/2 * 1 which equals Pi/2.  The area 

under the curve in this case is 1.0.  It is not the total area which is Pi/2. 

 

Please note that this is the energy of the object in question not the work done on the object 

which is a slightly different thing. 

 

Let’s understand this equation in terms of the Einstein Relative Kinetic Energy formula. 

 

Einstein formulated Relative Kinetic Energy as 
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This formula produces infinity where v=c.  The infinite energy refers to the work done to 

accelerate an object to c.  It’s the work done by another object or force which is doing the 

work.  For example, it’s the work done by the person pushing the rock, not the energy of the 

rock itself.  In Pi-Space, the Relative Kinetic Energy formula described models the energy of 

the moving object itself (the rock, using the analogy) and not that of the object applying the 

force (the person).  Einstein’s formula models the person doing the pushing of the rock.  Let’s 

derive our formula to look like the Einstein one and see how they compare. 

 



















c

v
ArcSinCos1  

 

Simplify Cos(ArcSin(v/c)) to use Square Root equivalent 
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Where 1 = mc^2 (no longer using standard units) 
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One of the major arguments in favor of the Einstein equation being correct is that it 

represents the Newtonian equivalent where v << C because of the Binomial expansion.  In 

Mathematica, we can express this as. 

 

Series[1/Sqrt[1-x^2],{ x,0,10}] 



 
 

The second term x^2/2 represents 1/2mv^2 in the Newtonian equation where v << c. 

 

Let’s apply the same analysis to the Pi-Space equation. 

 

Series[Sqrt[1-x^2],{ x,0,10}] 

 
 

...
82

42
22 xx

mcmc   

 

This also approximates the Newtonian Equation where v << c as the second term is x^2/2. 

 

So, summing up.  The Pi-Space Relative Kinetic Energy equation represents the Kinetic 

Energy of the object in question.  Einstein’s Relative Kinetic Energy formula models the 

object doing the work which becomes infinite when v = C.  The Pi-Space Kinetic Energy 

formula does not go to infinity but to c^2 at v = c, which was always the total energy of the 

object in the first place.  However, the Einstein equation correctly shows that it takes an 

infinite amount of work to achieve this kinetic energy state. 

 

Why is this distinction important?  The reason why this is important is that when we describe 

Kinetic Energy using the roller coaster analogy within Gravity, we describe the energy of the 

roller coaster itself which is what the Pi-Space formula describes; the energy of the object 

itself. 

 

Example. 

 

Let’s convert 20 Miles Per Second into Kinetic Energy and get the Newtonian result and then 

use the Pi-Space formula. Here I use Mathematica expressions. 

 

Mass = 1,  

Newton KE = 0.5*((20)^2) = 200 

 

Miles Per Second 186000 

Pi-Space KE = (1 - Cos[ArcSin[20.0/186000.0]])*(186000^2) = 200 

Note how we multiply by C^2 to get back to the Newtonian analogue 

 

 

1.4 Representing Flow of Time as an Angle Change in Pi-
Space 

 
I’ve already shown that time is proportional to the diameter of a Pi-Shell.  Using the SR 

formulas, we can see that a smaller Pi-Shell has slower time than a larger one.  However, an 

important question arises when an object falls under Gravity or accelerates.  How can one 

represent the rate of change of time with respect to area change?  The Pi-Shell diagrams I’ve 

shown so far do not have any concept of time, except for showing a larger one has a differing 
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clock tick.  How can one accurately measure time or visualize it in Pi-Space?  The answer 

goes back to the right-angled triangle.  I’ve shown how we can measure KE more accurately 

using a Pi-Shell which is gaining area.  I turned the proportion of c, namely v/c into an 

ArcSin equivalent which is the angle representing the proportion of area change.  This is the 

angle in a right-angled triangle.  Also, I’ve already shown that a right-angled triangle 

represents Pi-Shell addition where one Pi-Shell represents the change in area and the other is 

the remaining Observer Pi-Shell area leading to the need for relativity calculations.  

Therefore, as the angle changes in a right-angled triangle the amount of area changes also 

which is our focus for this discussion.   For the sake of convention, we can assume that the 

perpendicular line segment represents the Pi-Shell whose area is growing.  This can be 

assumed to be the area loss due to acceleration. 
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What is significant about this angle area change?  The answer is that it represents a constant 

rate of area change wrt to the diameter of a Pi-Shell.  What we are looking at is how a Pi-

Shell loses area as it falls under Gravity or generally accelerates.  So, if we take a unit of 

constant area change over time and we can represent it as a Pi-Shell starting at 0 and ending 

up at a particular v/c, we can break the rate of change up into 0 to 90 degrees and this acts as 

the timer, namely the per second timer, as v/c is per second. 

 

Importantly, the angle change is proportional to the line segments which are diameter 

representations of a Pi-Shell.  Therefore, the angle is proportional to the rate of change of 

time which is proportional to the diameter. 

 

1.5 General Solution (v<<C and v<C) To Potential Energy 
Using Pi-Space 

 



The general solution to Potential Energy is to place it equal to the new Kinetic Energy 

equation. 
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Therefore we can see that Gravity is non-linear as v<C and linear as v <<C.  However, it 

would be nice to derive a more general acceleration formula based purely on velocity change 

as Newton did.  This is covered as the general solution to acceleration. 

 

1.6 Solving for KE=PE for v/c where v<C and v<<C 
 

Let’s derive the v/c solution to KE=PE.  The usefulness of this approach is that this can later 

be used to derive the escape velocity for an object attempting to escape a Gravity field or if 

one would like to understand ones velocity after falling a certain distance under Gravity. 
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The values match at the lower relativistic values.  Again, we can use Mathematica to plot the 

values.  Note gh/cc must be less <= 1 as it is a relativistic formula. 

 

Table[Sin[ArcCos[1-gh]],{gh,0,1.0, 0.1}] 

{0,0.43589,0.6,0.714143,0.8,0.866025,0.916515,0.953939,0.979796,0.994987,1.} 

 

Table[Sqrt[2*gh],{gh,0,1.0,0.1}] 

{0,0.447214,0.632456,0.774597,0.894427,1.,1.09545,1.18322,1.26491,1.34164,1.41421} 

 

Placing this is a comparison tables 

 

gh/cc Newtonian Velocity Pi-Space Velocity 

0.0 0.0 0.0 

0.1 0.447214 0.43589 

0.2 0.632456 0.6 

0.3 0.774597 0.714143 

0.4 0.894427 0.8 

0.5 1.0 0.866025 



0.6 1.09545 0.916515 

0.7 1.18322 0.953939 

0.8 1.26491 0.979796 

0.9 1.34164 0.994987 

1.0 1.41421 1.0 

 

As we can see, the Newtonian Velocity is > C while the Pi-Space solution is 1.0 when 

PE=1.0C. 

 

Important note: 

 




































22
11

c

gh
ArcSinCos

c

gh
ArcCosSin  

 

So we can represent it this way if we choose.  We leave it this way for the example to show 

how it was derived but it’s possible to use it the other way if preferred. 

 

1.7 Solving for KE=PE Escape Velocity where v<C and v<<C 
 

We start with the Newtonian formula 
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We can convert to the Pi-Space version 
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Solving for v/c, Note GM/r is divided by c^2 
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Adjusting to Pi-Space units of area 
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To get back a Newtonian velocity we need to multiply by C 
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Which is the same as 

 

c
c

r

GM

ArcSinCosv *1
2













































  

 

So what we need is the mass of the planet and the radius. 

 

Body Mass (kg) Radius (km) 

Earth 5.98 * 10
24

 6378 

Mercury 3.30 * 10
23

 2439 

Venus 4.87 * 10
24

 6051 

Mars 6.42 * 10
23

 3393 

Jupiter 1.90 * 10
27

 71492 

Saturn 5.69 * 10
26

 60268 

Uranus 8.68 * 10
25

 25559 

Neptune 1.02 * 10
26

 24764 

Pluto 1.29 * 10
22

 1150 

Moon 7.35 * 10
22

 1738 

Ganymede 1.48 * 10
23

 2631 

Titan 1.35 * 10
23

 2575 

Sun 1.99 * 10
30

 696000 

 

 

Let’s take the example of the Earth using the traditional Newtonian mechanism. 

As an example, the mass M of the Earth is 5.98 * 10
24

 kilograms. The radius r of the Earth is 

6378 kilometers, which is equal to 6.378 * 10
6
 meters. The escape velocity at the surface of 

the Earth can therefore be calculated by: 



vesc = (2 * G * M / r)
1/2

 

 = ( 2 * (6.67 * 10
-11

) * (5.98 * 10
24

) / (6.378 * 10
6
) ) 1/2

 

 = 1.12 * 10
4
 meters/second 

 = 11.2 kilometers/second APPROX 

Mathematica Sqrt[2*(6.67*10^-11)*(5.98*10^24)/(6.378*10^6)] = 11183.7 

 

So, let’s use the Pi-Space formula. 

First point to note is that the Gravitational potential must be expressed in terms of an area 

change. 

 

So we need to have the speed of light which is 299,792,458 meters per second.   

 

Also, once we have the result, this is an area calculation; we need to convert it back to a 

velocity so we need to multiply the answer by the speed of light. 

 

This equates to the following Mathematica expression. 

 

Sin[ArcCos[1-((((6.67*10^-11)*(5.98*10^24))/(6.378*10^6))/(299792458^2))]] * 

299792458 

 

This produces an answer of 11183.7 meters per second, or 11.1837 kilometers per second. 

 

TODO: Fill out the other planets 

 

 

Planet Mass Radius Newton Escape Velocity Pi-Space E/V 

Earth 5.98 * 10
24

 6378 11183.7 11.1837 

Mercury 3.30 * 10
23

 2439   

Venus 4.87 * 10
24

 6051   

Mars 6.42 * 10
23

 3393   

Jupiter 1.90 * 10
27

 71492   

Saturn 5.69 * 10
26

 60268   

Uranus 8.68 * 10
25

 25559   

Neptune 1.02 * 10
26

 24764   

Pluto 1.29 * 10
22

 1150   

Moon 7.35 * 10
22

 1738   



Ganymede 1.48 * 10
23

 2631   

Titan 1.35 * 10
23

 2575   

Sun 1.99 * 10
30

 696000   

 

 

1.8 Solving for a Black Hole Event Horizon 
 

Let’s derive the radius solution where a Gravity field completely compresses the mass.  This 

is more commonly called the event horizon or Schwarzchild radius.  In this case, we assume 

the velocity is equivalent to the Speed of Light which means the atom is completely 

compressed. 
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The Newtonian derivation is, where the ‘2’ is due to the averaging of the velocities.  Pi-Space 

does not need to do this as discussed earlier and uses an Integral. 
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Therefore for Earth, the back hole radius is 

 

Newtonian / Schwarzchild derivation  

2*(6.67*10^-11)*(5.98*10^24)/(299792458^2) = 0.00887597 = 8.8 mm approx 

 

Versus 

 

Pi-Space derivation 

(6.67*10^-11)*(5.98*10^24)/(299792458^2)= 0.00443798 = 4.4 mm approx 



 

 

1.9 General Solution (v<<C and v<C) To Acceleration 
 

Newton defined acceleration as the rate of change of acceleration with respect to time.  The 

implicit assumption is that acceleration is constant. 
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In Pi-Space, acceleration is linear where v<<C but non-linear where v<C.  Generally 

speaking, we can modify the acceleration equation to include a scaling factor. 
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Where   is between range [0..1].  If   is 1 then v << C and if v = C then   is 0.  When   

is 0, there is no acceleration and when   is 1, this is the acceleration we are familiar with on 

Earth inside a weak Gravity field or when we accelerate our cars for example. 

 

We choose Sine because it represents a constant rate of change of velocity, as I’ve described 

earlier.  The slope of Sine represents the rate of change of acceleration. 

 

So we need a simple version and a more complex version using Integration for larger velocity 

ranges. 

 

1. For v2/c – v1/c << C use 
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In Mathmetica, we can plot constant velocity increases of 0.1 to 0.2, 0.2 to 0.3 etc;  

 

Plot[(Sin[ArcSin[x+0.1]]-Sin[ArcSin[x]])/(ArcSin[x+0.1]-ArcSin[x]),{x,0,0.9}]; 

 



 
 

Table[(Sin[ArcSin[v+0.1]]-Sin[ArcSin[v]])/(ArcSin[v+0.1]-ArcSin[v]),{v,0,0.9,0.1}] 

 

{0.998329,0.988235,0.967729,0.936118,0.892204,0.834012,0.758171,0.658338,0.51955,0.2

21716} 

 

Velocity 0..V, t=1, constant 

acc 

Newtonian Acc m/s/s Pi-Space   

0.0 to 0.1 0.5 0.5 * 0. 998329 

0.1 to 0.2 0.5 0.5 * 0. 988235 

0.2 to 0.3 0.5 0.5 * 0. 967729 

0.3 to 0.4 0.5 0.5 * 0. 936118 

0.4 to 0.5 0.5 0.5 * 0. 892204 

0.5 to 0.6 0.5 0.5 * 0. 834012 

0.6 to 0.7 0.5 0.5 * 0. 758171 

0.7 to 0.8 0.5 0.5 * 0. 658338 

0.8 to 0.9 0.5 0.5 * 0. 51955 

0.9 to 1.0 0.5 0.5 * 0. 221716 

 

Also for V=C (0.999999C to 1.0) 

 

(Sin[ArcSin[1.0]]-Sin[ArcSin[0.999999]])/(ArcSin[1]-ArcSin[0.999999])= 0.000707107 

 

So there is virtually no acceleration near the speed of light as the Pi-Shell has no remaining 

area. 

 

 

 

2. For v2/c – v1/c < C, you can use an Integral, summing and then averaging all 

the slopes.  You can assume x = 0.0001 
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e.g. (NIntegrate[((Sin[x]-Sin[x-0.000001])/0.000001),{x,0, 1.5707}])/(1.5707) 

 

Table[((NIntegrate[((Sin[x]-Sin[x-0.000001])/0.000001),{x,i,i+0.1}])/(0.1)),{i,0,1.57,0.1}] 

 

{0.998334,0.988359,0.968509,0.938982,0.900072,0.85217,0.795752,0.731384,0.659709,0.5

81441,0.497364,0.408318,0.315191,0.218916,0.120453,0.0207867} 

 

 

Proof 

 

Consider an object with velocity v1 accelerating to v2 over time t. 

 

Acceleration is the rate of change of velocity with respect to time 

 

In Pi-Space, acceleration is the rate of change of Pi-Shell area loss with respect to time 

 

In Pi-Space, the change of area of a Pi-Shell is modeled by the Sin(x) function representing 

the per second area change in terms of its diameter. 

 

The diameter line represents v/c and the angle represents per second time t. 

 

Therefore 0..90 degrees represents a Pi-Shell accelerating from 0..v/c in time t, per second. 

 

From differential calculus, acceleration is the slope of the velocity change. 

 

The slope of the sin(x) function between v2/c and v1/c therefore represents acceleration.  We 

turn v2/c and v1/c into an angle using the ArcSin() function. 

 

To calculate the slope, one needs to add the slope at each point and add them up, then average 

them over the range of velocities under consideration. 

 

We use an Integral to add up the individual y/x slopes. 

 

Then we divide the summed slopes by the range of angles to get the average acceleration over 

that range. 

 

In the case where v << C, we can subtract the velocities and divide by the angle difference 

which is equivalent to time. 

 



1.10 Pi-Space Solution to Einstein’s SR Lorenz-Fitzgerald 
Relativity Formula 

 
There is no question to the fact that Einstein’s SR Lorenz-Fitzgerald formula works.  

However, it’s possible to derive this formula independently of the Einstein approach without 

using rods and clocks.  Let’s see how we can derive it in Pi-Space. 

 

Let’s first understand what the Lorenz-Fitzgerald transformation is.  It is a scaling factor 

which represents the change in diameter of the Observer Pi-Shell.  Newton’s formulas all 

assume that the Observer Pi-Shell remains the same size.  However, Einstein showed that this 

was incorrect.  Once more we return to a right angled triangle.  The hypotenuse represents the 

stationary Observer or the Newtonian Observer whose size is 1.  The other two Pi-Shells 

represents the Pi-Shell whose area is growing and whose area is shrinking.  The Pi-Shell 

whose area is growing represents the Newtonian Observer loss of area due to velocity.  The 

other Pi-Shell whose area is shrinking represents the non-Newtonian or relativistic Observer 

whose Pi-Shell is shrinking due to velocity area loss. 

 

In order to correctly adjust the velocity, we must calculate the proportion of the Newtonian 

Observer to the Relativistic Observer.  How can we do this in Pi-Space?  We already know 

the amount of area gain due to velocity we can calculate it using Sine as this is area gain in 

terms of the right-angled triangle. 
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Note: This is the velocity relative to the Newtonian Observer and is equivalent to Newtonian 

velocity. 

 

1 HypotenusebserverNewtonianO  

 

Therefore, the relativistic observer is the remaining area of a right-angled triangle.  

Remember that a right-angled triangle represents Pi-Shell area addition, expressed in terms of 

the diameter.  A Pi-Space rule of thumb is that Cosine represents Pi-Shell compression so we 

use Cosine for the case where we are losing area. 
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This is equivalent to 
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Therefore, if we want a relativistic velocity, we need to calculate the non-relativistic velocity 

by the Relativistic Observer 

 

*ReRe ObserverlativisticVelocitylativistic  <property> 



 

We can use this value for time, length x and mass as these are all properties of a Pi-Shell. 

 

 

 
 

Velocity 0..C Lorenz-Fitzgerald Sqrt(1-

v/c*v/c) 
Pi-Space Cos(ArcSin(v/c)) 

0.0 1.0 1.0 

0.1 0.994987 0.994987 

0.2 0.979796 0.979796 

0.3 0.953939 0.953939 

0.4 0.916515 0.916515 

0.5 0.866025 0.866025 

0.6 0.8 0.8 

0.7 0.714143 0.714143 

0.8 0.6 0.6 

0.9 0.43589 0.43589 

1.0 0.0 0.0 

 
 

1.11 General Solution to the Average Velocity (v<<C, v<C) 
 

One of the key aspects of Newton’s formulas is the calculation of the average velocity.  

Newton’s approach is to assume Gravity is linear therefore the velocity gain is linear.  The 

average velocity is half-way along the velocity change. 
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In Pi-Space, we can sum the velocities to produce Kinetic Energy.  The average velocity is 

therefore the sum of the velocities, divided by the velocity range. 
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Which produces, where x = v/c 
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Table[(1-Cos[ArcSin[x]])/(ArcSin[x]), {x,0.1,1, 0.1}] 

 
Velocity 0..C Newton Average velocity Pi-Space Average Velocity 

0.0 0.0 0.0 

0.1 0.05 0.0500418 

0.2 0.1 0.100339 

0.3 0.15 0.151171 

0.4 0.2 0.202871 

0.5 0.25 0.255873 

0.6 0.3 0.3108 

0.7 0.35 0.368659 

0.8 0.4 0.431362 

0.9 0.45 0.503773 

1.0 0.5 0.63662 

 

 

1.12 General Solution to Distance an Object Travels as it 
Accelerates 

 
The distance an object travels while accelerating is defined by Newton as 
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We’re interested in the second part of the formula, which is the acceleration part 
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tan atceonDisaccelerati   

 



This is the summing up of the Kinetic Energy component over time t and averaging it which 

produces the general version of the formula.  Time t is multiplied by acceleration a, to 

produce a velocity v and halved to get the average velocity.  The average velocity is then 

multiplied by time t once more to get the distance traveled. 
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Where 

1, 00  atvv
c

at
  

 

Note:   is applied to the acceleration range vel start to vel end  e.g. 0.1 to 0.2C 

 

Note: There is no straight-forward way to solve for time t using this approach but it is more 

accurate while calculating distance. 

 

 

Table[((1-Cos[ArcSin[0.01*t]])/(ArcSin[0.01*t]))*t,{t,1,10,1}] 

{0.00500004,0.0200007,0.0450034,0.0800107,0.125026,0.180054,0.2451,0.320171,0.40527

4,0.500418} 

 

Versus 

 

Table[(0.5*.01*(t*t)), {t,1,10, 1}] 
 

 

 

Time in seconds, 

acc=0.1m/s/s 

Pi-Space Distance Newton Distance 

1 0.00500004 0.005 

2 .0200007 0.02 

3 0.0450034 0.045 

4 0.0800007 0.08 

5 0.0800107 0.125 

6 0.180054 0.18 

7 0.2451 0.245 

8 0.320171 0.32 

9 0.405274 0.405 

1.0 0.500418 0.5 

 

 



1.13 General Solution to the final velocity of a falling Object  
 
When something is dropped under Gravity, one quickly asks the question when it hits the 

ground, how fast was it traveling if it traveled distance x?  Newton answered this question 

with the following formula. 

 

axVV of 222   

 

This formula can be derived in Pi-Space in the same way that Newton derived it by matching 

Kinetic Energy to Potential Energy.   
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Velocity v is the final velocity and Newton solved by breaking out its constituent parts. 
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This produces the final formula where gh and are replaced by acceleration a and distance x.  

Let’s solve this in Pi-Space. 
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Table[(Sqrt[2*x]),{x,0.1,1,0.1}] 

 

{0.447214,0.632456,0.774597,0.894427,1.,1.09545,1.18322,1.26491,1.34164,1.41421} 

 

Table[(Sin[ArcCos[1-x]]),{x,0.1,1,0.1}] 

 

{0.43589,0.6,0.714143,0.8,0.866025,0.916515,0.953939,0.979796,0.994987,1.} 

 

And for smaller values 

 



Table[(Sin[ArcCos[1-x]]),{x,0.000001,.00001,0.000001}] 

 

{0.00141421,0.002,0.00244949,0.00282842,0.00316227,0.0034641,0.00374165,0.00399999,

0.00424263,0.00447212} 

 

Table[(Sqrt[2*x]),{x,0.000001,.00001,0.000001}] 

 

{0.00141421,0.002,0.00244949,0.00282843,0.00316228,0.0034641,0.00374166,0.004,0.004

24264,0.00447214} 

 

1.14 Distance Travelled at Final Velocity 
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Solving in Pi-Space, KE = PE 
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1.15 Solving for time t to travel distance x  
 

t

atvv
c

at
ArcSin

atvv
c

at
ArcSinCos

tvcedis

























































00

00

0

,

,1

tan





 

 

This does not readily solve for t, however we can use the move out time t and make the 

equation more like the Newtonian equation.  We average the per second diameter line change 

(acceleration) instead of the final velocity. 
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This solves for t in a reasonable manner, similar to the Newtonian equation. 

 

Solve[v*t + ((1-Cos[ArcSin[a]])/(ArcSin[a]))*(t*t)  s,t] 

 

 
 

v=0 

a=0.01 

s=0.405274 

 

Solve[v*t+((1-Cos[ArcSin[(a)]])/(ArcSin[(a)]))*(t*t) == s,t] 

 

{{t-9.00301},{t9.00301}} so the solution is 9 seconds 

 

1.16 Newton’s Gravity Formula 
 
The typical formula for Gravity is for a planetary body of Mass M. 

 

2r

GMm
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The modified Pi-Space formula is essentially the same but it contains the constant Pi.  This is 

because the radius squared is the Square Rule for determining the area of the Pi-Shell in 

question. 

 

Therefore the Gravity Field is a mass induced field divided by the Pi-Shell for the planet to 

get a discrete area change.  Fg calculates the per atom / Pi-Shell area change as we move 

within the field.  As we move upwards, we gain area relative to the observer and as we move 

downward we lose area relative to the observer.  The Gravitational constant is a scaling factor 

for the total area change and maps it to a per atom area change wrt to distance h, typically in 

meters.  Time is squared because it’s proportional to the diameter change and needs to be 

squared to map it to an area change which is the overall units.  Therefore Gravity which is 

acceleration has units “meters per second squared”. 
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*' GG   

 

 

G’ is a modified Universal Gravitational constant.  The overall result of the formula is the 

same but hopefully the reason for it working is more intuitive using this formulation. 

 

This modified value is 2.0963847777404688E-10 and is the Pi-Space Universal 
Gravitation Constant. 

 

1.17 General Solution to Orbits for Pi Space using Law of the 
Sines and Law of the Cosines 

 

Typically orbits are covered using Kepler’s approach.  In Pi-Space, the idea is to come up 

with a general approach to movement, similar to Newton’s Centripetal force idea.  In Pi-

Space we don’t talk about Ellipses or centripetal forces.  We talk about adding the force 

generated by the field with the energy of the moving object.  The Law of the Sines and the 

Law of the Cosines are used to calculate the next position.  This is really just a more general 

form of the Pythagorean Theorem.  The idea is that this approach can be used for both 

trajectories like cannon balls on Earth and the orbits of planets. 

 

We can use the Law of the Cosines and the Law of the Sines to produce an elliptical orbit and 

the other types of orbits, using these two Laws in Pi-Space.  Remember that the position, 

velocity and time are the Product of Pi-Shell addition.  The Law of the Cosines and Law of 

the Sines are General Pi-Shell addition formulas. 

 

To calculate the orbit, all one needs to know is the distance from the center of gravity, the 

velocity of the object and its angle with respect to the center of gravity.  This is angle θ. 

 



 
 

The high level steps are. 

 

1. Choose x1,y1 moving with velocity v under an acceleration a and angle θ to that 

Gravity field, center of gravity distance t, offset angle O wrt to axes 

2. Calculate a from Newton a = GM/t^2 (M is mass of object) 

3. Calculate the Interior Angle (180 – θ) of orbit triangle 

4. From 0.5a*t^2, vt and Interior Angle, calculate u (Law of Cosines) 

5. From u,Interior Angle, 0.5a*t^2, calculate β (Law of Sines) 

6. Calculate α from 180 – β - InteriorAngle 

7. Calculate S from t,u, α (Law of Cosines) 

8. Calculate M from s, α,u (Law of Sines) 

9. Calculate New Offset Angle = 0 + M 

10. Goto step 1, d(new) = s, θ(new) = θ – β, v(new) = u, offset angle O is O+M 

11. (new)x1 = s * Cos(90-New Offset Angle), (new)y1 = s * Sin(90-New Offset Angle) 

 

Note: See Appendix A for worked Java code implementing this idea 

 

Calculating an Orbit in Pi-Space

Center of Gravity 
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1.18 Bernoulli And Pi-Space 
 

 

We have Pitot and Venturi Formulas in Pi-Space 

 

Pitot 
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Venturi 
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We can calculate the values in the following way 

 

Let’s do a simple calculation to solve for velocity knowing pressure.  In Pi-Space, Energy is 

an area loss of a Pi-Shell.  Velocity is a diameter line change. 

 

Pressure is an energy calculation and is therefore an area loss. 

 

We use an imperial system example 

 

Where we have PSI
 

 

Let’s take an example where the dynamic pressure is 1.040 lb/ft^2 

 

Also the density of air is 0.002297 slug/ft^3 

 

Using the classic formula, Using Mathematica 

 

Sqrt[2∗(1.04)/(0.002297)] = 30.092 ft/s 

 



 

Now let’s use the Pi-Space formula 

 

This formula requires that we use the speed of light in feet per second 

 

the speed of light = 983,571,056 foot per second 

 

Sin[ArcCos[1 - (((1.04)/(0.002297))/(983571056^2))]]*983571056 = 29.3127 

 

Now we can see this is not the same as the Classical Result. 

 

 

The Pi-Space Theory maintains that this is a “more accurate” result than the classical 

approach. 

 

The Classical Approach is just an approximation. 

 

Let’s make Pi-Space match the Classical approach. 

 

For the speed of light, we set it to 9835710 foot per  second (incorrect) instead of 983571056 

foot per second 

 

Sin[ArcCos[1 - (((1.04)/(0.002297))/(9835710^2))]]*9835710 = 30.092 

 

Therefore, the more accurate the speed of light calculation, the more accurate the Pitot 

Velocity result in the Pi-Space Theory. 

 

Note: This would have to be proven/disproven by actual experimentation.  I do not have the 

equipment for this. 

 

Here is a table showing the range of values which are approximate to one another. 

 

Table[Sin[ 

   ArcCos[1 - (((psi)/(0.002297))/(983571056^2))]]*983571056, {psi, 1, 

   30, 1}] 

 

{29.3127, 41.4544, 50.7711, 58.6254, 65.5452, 71.8012, 77.5541, \ 

82.9088, 87.9381, 93.8464, 98.3178, 102.594, 106.7, 110.653, 114.47, \ 

118.163, 121.745, 125.224, 128.609, 131.907, 135.125, 138.268, \ 

141.341, 144.348, 147.295, 150.183, 153.017, 155.799, 159.209, \ 

161.885} 

 

 

 

 

Table[Sqrt[2*(psi)/(0.002297)], {psi, 1, 30, 1}] 

 

{29.5076, 41.7301, 51.1087, 59.0153, 65.9811, 72.2787, 78.0699, \ 

83.4602, 88.5229, 93.3114, 97.8658, 102.217, 106.391, 110.407, \ 

114.283, 118.031, 121.663, 125.19, 128.621, 131.962, 135.221, \ 



138.403, 141.514, 144.557, 147.538, 150.46, 153.326, 156.14, 158.904, \ 

161.62} 

 

1.1 Simple Harmonic Motion solving for v using x and A 
 

Energy Conservation for Harmonic Oscillator 

 

222

2

1

2

1

2

1
mvkxkA   

 

Solving for v classically 

 

 22 xA
m

k
v   

 

At x=A, velocity is 0 

 

At x=0, velocity is maximum 

 

We can solve the equations in the traditional fashion. 

 

Harmonic Velocity, Amplitude A, position x, Spring force k, mass m. 
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Worked example 

 

A=5 meters , x=2.5 meters, k=1 N/m ,m=2 N/m  

 

Classic 

 

Sqrt[(1.0/2.0)*((5.0*5.0) - (2.0*2.0))] 

Result is 3.24037 m/s 

 

Pi-Space 

 

 

Sqrt[(1.0/2.0)]* 

     ( 

          Cos[ArcSin[1 - 

      (  

       ( 

         ((5.0*5.0*0.5) - (2.0*2.0*0.5))/(299792458*299792458) 

        ) 

       ) 

     ]]  

   *299792458 



  ) 

 

This produces a result of 3.15883 m/s.  This is not the same as the classical result. 

 

Pi-Space maintains that is a more “accurate” result. 

 

To make the result match the Classical Result, we just need to make Speed of Light less 

accurate (incorrect!)  e.g. 2997924 

 

Let’s redo the calculation 

 

Sqrt[(1.0/2.0)]* 

     ( 

          Cos[ArcSin[1 - 

      (  

       ( 

         ((5.0*5.0*0.5) - (2.0*2.0*0.5))/(2997924*2997924) 

        ) 

       ) 

     ]]  

   *2997924 

  ) 

 

This produces a result of 3.24038 m/s so they match. 

 

This would need to be verified by experimentation.  I do not have the equipment for this. 

 

 

 

1.2 Average Transverse Kinetic Energy Due To Temperature, 
solving for velocity 

 

 

Solving for Velocity in Pi-Space, we have the form 
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Let’s solve a problem 

 

Find Transverse KE and Average Velocity 

 

T = 27 Degrees Celsius = 300 Kelvin 

Mass Helium = 6.65*10^-27 Kg 

 



Solve for Classic 

 

KEtr = (3/2)∗(1.38∗10^−23)∗(300)= 6.21×10-21 

 

Solving for Velocity 

 

Sqrt[(2.0*(6.2*10^-21))/(6.65*10^-27)] 

 

V = 1365.53 = 1.37*10^3 m/J 

 

Solve for Pi-Space 

 

 

V =  

(Cos[ArcSin[ 

    1 - (((6.21*10^-21)/(6.65*10^-27))/(299792458^2))]])*(299792458) 

Gives us 

 

V = 1366.63 = 1.37*10^3 m/J 

 

 

 

 

 

 

1.3 Table of Formulas 
 
Here we compare the Pi Space Theory Formulas versus the established formulas.  These are 

Archimedean formulas in that they are calculated from the properties of Spheres. 

 

Pi-Space units are v/c (atom diameter line change) and g/c^2 (atom area change) relative to 

Observer 

 

Note: If you want to use these formulas with MPH or Meters, first convert the velocity value 

to v/c where c = 186000 mps for miles and c = 299,792,458 meters per second.  Divide by 

60*60 = 3600 if you want a per second value for your velocity.  If you have an acceleration 

or a gravity value which are the same, divide by c^2 where c depends on the units you are 

working with.  When you get a result from the formula and you want to convert back to your 

original units, if your units are 1/c (see formula "Units" column), then all you need to do is 

multiply the result by that value.  If the units are 1/c^2 all you need to do is multiply by 

c^2.  Energy has units 1/c^2 for example.  Velocity has typically 1/c. 

  



 Newton Einstein 
Pi Space Theory 

(Brady) 
Units 

Velocity 

Addition 
u + v u + v / 1 + uv  1/c 

Velocity 

Subtraction 
u - v u - v / 1 – uv  1/c 

Kinetic 

Energy 
1/2mv^2  

m*(1-

Cos(ArcSin(v/c))) 

*c^2 

1/c^2 

Relativistic 

Kinetic 

Energy 

 
mc^2/Sqrt(1 - 

v^2/c^2) - mc^2 

mc^2 - mc^2*Sqrt(1 - 

v^2/c^2)  
1/c^2 

Total 

Energy 
 E=MC^2 E = M*Pi*C^2 1/c^2 

Potential 

Energy 
mgh  mgh 1/c^2 

Velocity for 

KE=PE 

mgh = 

1/2mv^2 
 

mgh = m*(1-

Cos(ArcSin(v/c))) 
1/c 

Velocity for 

PE 

v  = 

Sqrt(2*gh) 
 

v = Sin(ArcCos(1-

gh/c^2))*c 
1/c 

Escape 

Velocity 

v= 

Sqrt(2GMm

/r) 

Tuv = Guv 
v = Sin(ArcCos(1-

(GMm/r)/c^2))*c 
1/c 

Lorentz-

Fitzgerald 

Transformati

on 

 Sqrt(1-v^2/c^2) Cos(ArcSin(v/c)) 1/c^2 

Time 

Dilation 
 

t = t' / Sqrt(1-

v^2/c^2) 

t = t' / 

Cos(ArcSin(v/c)) 
1/c 

Distance 

Shortening 
 

x = x' * Sqrt(1-

v^2/c^2) 

x = x' * 

Cos(ArcSin(v/c)) 
1/c^2 

De Broglie 

Wavelength 

Shortening 

 
(h/mv)*Sqrt(1-

v^2/c^2) 

(h/mv)*Cos(ArcSin(v

/c)) 
1/c 

Radius 

Excess 
 

planet radius * 

GM/3c^2 

planet radius * 

GM/c^2 
1/c^2 

Average 

Velocity 

avg vel = 

v0 + v / 2 
 

v = vo + v 

 

avg vel = (1-

Cos(ArcSin(v/c))) 

/  ArcSin(v/c) 

1/c 

Acceleration v2 - v1 / t Metric (v2 - v1 / t) * gamma  



Gravity 
Fg = 

GMm/r^2 

Fg = 

G’Mm/Pi.r^2 

Fg = GMm/r^2 

(average acceleration 

or atom area change - 

multiply by "gamma" 

to calculate non-

uniform value based 

on velocity range) 

 

Note: Full Pi-Space 

formula for Gravity is 

Fg = 

G’Mm/Pi*r^2  where 

Pi*r^2 represents the 

area of the "Planet's 

Gravity Pi 

Shell".  Typically 

though Pi is ignored. 

1/c^2 

Non 

Uniform 

Acceleration 

Calculation 

"gamma" 

 Metric 

Multiply Newtonian 

acceleration "a" by 

gamma value to get 

adjusted value.  Input 

velocity range v1 to 

v2 into gamma 

formula 

 

Simple version 

(gamma measures 

changing slope of 

acceleration which is 

non constant) 

 

gamma = (v2 - v1) / 

(ArcSin(v2) - 

ArcSin(v1)) 

 

Newtonian 

Acceleration 

accel = v2 - 

v1 / t 
 

accel = (v2 - v1 / 

t)*gamma 
1/c^2 

Distance 

traveled 

s = vt + 

1/2at^2 
 

a1 = a * gamma (vo, 

vo + at) 

 

s = vt + (1-

Cos(ArcSin(a1*t/c))/(

ArcSin(a1*t/c)) 

1/c^2 

Final 

velocity of 

falling 

object 

v^2f = v^2o 

+ 2ax 
 

a1 = a * gamma  (vo, 

vo + ax) 

 

vf = vo + 

Sin(ArcCos(1- 

(a1*x)/c^2)) 

1/c 



Distance 

travelled at 

final 

velocity 

h = vf^2/2g  

g1 = g * gamma  (vo, 

vf) 

 

h =  (1 - 

(Cos(ArcSin(vf/c))) / 

(g1/c^2)  

1/c^2 

Solving for 

time t 

See [1] 

below 
 

Use Mathematica to 

solve for t, See [1] 

below 

 

 

1/c 

Black Hole 

Radius 

r = 

2GM/c^2 
 r = GM/c^2 1/c 

 

 Bernoulli Pi-Space  

Pitot - Velocity from 

Pressure 

v=Sqrt(2*(Pt-Ps)/Rho) v=Cos(ArcSin(1 – 

((Pt-Ps/Rho)/c^2) )*c 

1/c 

Venturi - Q - Flow Q=A1*Sqrt(2*(Pt-Ps)/(Rho*(1-

(A1/A2)^2)) 

Q=A1* 

Cos(ArcSin(1 – 

((Pt-Ps/(Rho*(1-

(A1/A2)^2)/c^2) )*c 

1/c 

 

 

Navier Stokes In Pi-Space 
 

Flow e.g. xy area/energy (See Quantum Theory Doc) 
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Navier Stokes Solving For Velocity (See Quantum Theory Doc) 

 

For xy,yz and zx axis e.g. 
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Simple Harmonic Motion, Solving For Velocity knowing Amplitude, x, Spring constant 

k and mass m (See Advanced Quantum Theory Doc) 
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Average Transverse Kinetic Energy Due To Temperature, solving for velocity 
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How the properties are mapped to the atom using the theory 

 

Pi-Space units are v/c (atom diameter line change) and g/c^2 (atom area change) relative to 

Observer 

 

Atom area is proportional to the atom diameter squared 

 

Atom time clock tick t is proportional to the atom diameter and time t squared is proportional 

to the area of the atom 

 

Atom distance s travelled is proportional to the area of the atom 

 

Velocity which is distance over time represents area divided by diameter which produces an 

atom diameter value 

 

Speed divided by distance over time squared is an atom area calculation 

 

Energy is an atom area calculation 

 

Cosine models compression of an atom.  Sine models non-compression.  Movement 

represents compression. 

Core Pi Space Math Ideas 

 

Formula Existing Pi Space 

Sphere addition  c^2 = a^2 + b^2 Pi*c^2 = Pi*a^2 + Pi*b^2 



Atom Area  Pi*d^2 

Diameter size of Observer atom C 1 

Atom diameter loss due to 

movement 
Velocity Sin(ArcSin(v/c)) = v/c 

Remaining diameter due to 

movement 
Lorentz-Fitz Cos(ArcSin(v/c)) 

General movement equation, Law 

of the Cosines 

c^2 = a^2 + b^2 + 

2abCos(Theta) 

Pi.c^2 = Pi.a^2 + Pi.b^2 + 

2.Pi.a.b.Cos(Theta) 

General angle equation for 

interacting atoms, Law of the Sines 

a/Sin(a) = b/Sin(b) = 

c/Sin(c) 
a/Sin(a) = b/Sin(b) = c/Sin(c) 

Range of velocities 0..C 0..ArcSin(v/c)) 

 


